matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationAbleitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: "Frage"
Status: (Frage) beantwortet Status 
Datum: 15:50 Do 10.05.2007
Autor: johnypfeffer

was mache ich falsch

(1+x)(1+x^(1/2))

wende hier die Produktregel an

[mm] [(1x^0)(1+x^{1/2}]+[(1+x)(1/2x^{-1/2}] [/mm]

        
Bezug
Ableitung: stimmt doch
Status: (Antwort) fertig Status 
Datum: 15:53 Do 10.05.2007
Autor: Roadrunner

Hallo Johnny!


Wenn Du am Ende [mm] $\bruch{1}{2}*x^{-\bruch{1}{2}}$ [/mm] meinst, ist alles richtig.

Nun halt noch etwas zusammenfassen ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:36 Fr 11.05.2007
Autor: johnypfeffer

Irgentwo mache ich aber was flasch ich poste mal nochmal die Aufgabe von Anfang an mit meien Kompletten Rechenweg

[mm] F(x)=(1+x)(1+\wurzel[]{x}) [/mm]

1)wurzel umgeschrieben
[mm] F(x)=(1+x)(1+x^\bruch{1}{2}) [/mm]

2)Erste ableitung Produktregel
[mm] f'(x)=[(1x^0)(1+x^\bruch{1}{2})]+[(1+x)(\bruch{1}{2}x^\bruch{-1}{2})] [/mm]

3)für [mm] 1x^0 [/mm] kann man doch auch 1 schreiben?

[mm] f'(x)=[1+x^\bruch{1}{2}] [/mm] + [ [mm] \bruch{1}{2}x^\bruch{-1}{2}+x^\bruch{1}{2}] [/mm]

4) alles zusammengefasst
[mm] f'(x)=1+x^\bruch{1}{2}+\bruch{1}{2}x^\bruch{-1}{2} [/mm]

die Lösung die ich habe für diese Aufgabe habe ist
[mm] f'(x)=1+\bruch{1}{2}x^\bruch{-1}{2}+\bruch{2}{3}x^\bruch{1}{2} [/mm]

so irgendwo liegt hier er wurm drin
vielleicht ein fehler in der lösung


Bezug
                        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Fr 11.05.2007
Autor: Gonozal_IX


> 1)wurzel umgeschrieben
>  [mm]F(x)=(1+x)(1+x^\bruch{1}{2})[/mm]

Ist ok.
  

> 2)Erste ableitung Produktregel
>  
> [mm]f'(x)=[(1x^0)(1+x^\bruch{1}{2})]+[(1+x)(\bruch{1}{2}x^\bruch{-1}{2})][/mm]

ok.
  

> 3)für [mm]1x^0[/mm] kann man doch auch 1 schreiben?

Jop

> [mm]f'(x)=[1+x^\bruch{1}{2}][/mm] + [mm][\bruch{1}{2}x^\bruch{-1}{2}+x^\bruch{1}{2}][/mm]

Hier machst du einen Fehler :-) Es müsste heissen:

[mm]f'(x)=[1+x^\bruch{1}{2}][/mm] + [mm][\bruch{1}{2}x^\bruch{-1}{2}+\bruch{1}{2}x^\bruch{1}{2}][/mm]

> 4) alles zusammengefasst
>  [mm]f'(x)=1+x^\bruch{1}{2}+\bruch{1}{2}x^\bruch{-1}{2}[/mm]

Wäre demnzufolge:

[mm]f'(x)=1+\bruch{3}{2}x^\bruch{1}{2}+\bruch{1}{2}x^\bruch{-1}{2}[/mm]

  

> die Lösung die ich habe für diese Aufgabe habe ist

  

> [mm]f'(x)=1+\bruch{1}{2}x^\bruch{-1}{2}+\bruch{2}{3}x^\bruch{1}{2}[/mm]

Naja, die Frage ist nun, ob du die [mm] \bruch{2}{3} [/mm] falsch abgeschrieben hast und es eigentlich [mm] \bruch{3}{2} [/mm] heissen sollte, dann wäre es ja richtig.

MfG,
Gono.  

Bezug
                                
Bezug
Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 Fr 11.05.2007
Autor: johnypfeffer

bei abtippen der lsg ist mir kein fehler unterlaufen

Dein Weg ist richtig und mein Fehler gefunden
danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]