Abgeschlossenheit einer Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beweise, dass die Gruppe [mm] (\IQ²\backslash(0,0),\cdot) [/mm] mit [mm] ((x_{1},y_{1}),(x_{2},y_{2})) \mapsto (x_{1},y_{1})\cdot(x_{2},y_{2}):=(x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}) [/mm] abgeschlossen ist. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich bin da so rangeganngen:
Um zu zeigen, dass [mm] (\IQ²\backslash(0,0),\cdot) [/mm] abgeschlossen ist muss ich zeigen, dass [mm] (x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}) \in \IQ²\backslash(0,0) \forall (x_{1},y_{1}),(x_{2},y_{2}) \in \IQ²\backslash(0,0). [/mm] Bzw. ich zeige [mm] (x_{1}x_{2}+2y_{1}y_{2}),(x_{1}y_{2}+x_{2}y_{1}) \in \IQ [/mm] und [mm] (x_{1}x_{2}+2y_{1}y_{2}) [/mm] oder [mm] (x_{1}y_{2}+x_{2}y_{1}) [/mm] ist nicht null [mm] \forall (x_{1},y_{1}),(x_{2},y_{2})\in \IQ²\backslash(0,0).
[/mm]
Nun versuche ich zu folgern, dass [mm] (x_{1}x_{2}+2y_{1}y_{2})=0\Rightarrow(x_{1}y_{2}+x_{2}y_{1})\not=0 [/mm] und [mm] (x_{1}x_{2}+2y_{1}y_{2})\not=0\Leftarrow(x_{1}y_{2}+x_{2}y_{1})=0, [/mm] komme aber überhaupt nicht weiter.
Kann mir jemand helfen? Ist der Ansatz überhaupt richtig?
Vielen Dank im Vorraus Reticella
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:57 Mi 22.10.2008 | Autor: | statler |
Guten Morgen!
> Beweise, dass die Gruppe [mm](\IQ²\backslash(0,0),\cdot)[/mm] mit
> [mm]((x_{1},y_{1}),(x_{2},y_{2})) \mapsto (x_{1},y_{1})\cdot(x_{2},y_{2}):=(x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1})[/mm]
> abgeschlossen ist.
> Ich bin da so rangeganngen:
>
> Um zu zeigen, dass [mm](\IQ²\backslash(0,0),\cdot)[/mm]
> abgeschlossen ist muss ich zeigen, dass
> [mm](x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}) \in \IQ²\backslash(0,0) \forall (x_{1},y_{1}),(x_{2},y_{2}) \in \IQ²\backslash(0,0).[/mm]
> Bzw. ich zeige
> [mm](x_{1}x_{2}+2y_{1}y_{2}),(x_{1}y_{2}+x_{2}y_{1}) \in \IQ[/mm]
> und [mm](x_{1}x_{2}+2y_{1}y_{2})[/mm] oder [mm](x_{1}y_{2}+x_{2}y_{1})[/mm]
> ist nicht null [mm]\forall (x_{1},y_{1}),(x_{2},y_{2})\in \IQ²\backslash(0,0).[/mm]
>
> Nun versuche ich zu folgern, dass
> [mm](x_{1}x_{2}+2y_{1}y_{2})=0\Rightarrow(x_{1}y_{2}+x_{2}y_{1})\not=0[/mm]
> und
> [mm](x_{1}x_{2}+2y_{1}y_{2})\not=0\Leftarrow(x_{1}y_{2}+x_{2}y_{1})=0,[/mm]
> komme aber überhaupt nicht weiter.
Ein Fall reicht: Wenn nämlich [mm] x_1*y_2 [/mm] + [mm] x_2*y_1 \not= [/mm] 0 ist, bist du fertig. Also nimmst du an, es wäre = 0. Dann löst du nach [mm] x_1 [/mm] auf und setzt in die andere Gl. ein. Da [mm] \wurzel{2} [/mm] nicht [mm] \in \IQ [/mm] ist, ergibt sich deine gewünschte Schlußfolgerung.
Hinweis: Du mußt sorgfältig argumentieren, weil du nicht du 0 dividieren darfst.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Vielen Dank, das habe ich verstanden und hinbekommen.
Jetzt fehlt mir allerdings noch das linksinverse Element.
Kann mir jemand helfen?
Viele Grüße Reticella
|
|
|
|
|
Hallo!
Wie sieht denn dein neutrales Element aus? Bei oberflächlichem Hinschauen sah es für mich so aus, als müßte das das Element (1,0) sein.
Damit hättest Du dann die Gleichung
[mm] $(1,0)=(x_{1}x_{2}+2y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}) [/mm] $,
sprich, die Gleichungen
[mm] $x_{1}x_{2}+2y_{1}y_{2}=1$ [/mm] und
[mm] $x_{1}y_{2}+x_{2}y_{1}=0$ [/mm]
nach [mm] $x_1$ [/mm] und [mm] $y_1$ [/mm] aufzulösen.
Grüße,
Christian
|
|
|
|