matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und MatrizenAbbildungsmatrix gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Abbildungen und Matrizen" - Abbildungsmatrix gesucht
Abbildungsmatrix gesucht < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Do 23.02.2012
Autor: JoeSunnex

Aufgabe
Gesucht sind die Abbildungsmatrizen für folgende lineare Abbildungen $f: [mm] \IR^2 \rightarrow \IR^2$ [/mm]

c) Spiegelung an der Geraden $y = [mm] -\frac{1}{2}x$ [/mm]
f) Projektion parallel zur Winkelhalbierenden $y = x$ auf die y-Achse


Hallo zusammen,

diesmal eine Frage zu linearen Abbildungen. Bei Aufgabenteil c habe ich einen Ansatz, den ich hier anfüge, bei f bin ich jedoch ratlos.

c)

Ich wähle einen Punkt [mm] $P(x_0|y_0)$. [/mm]
Eine orthogonale Gerade zu $y = [mm] -\frac{1}{2}x$ [/mm] durch den Punkt P ist: [mm] $y=2(x-x_0)+y_0$. [/mm]

Nun bestimme ich den Schnittpunkt beider Geraden:

[mm] $-\frac{1}{2}x [/mm] = [mm] 2(x-x_0)+y_0$ [/mm] => $x = [mm] \frac{4}{5}x_0 [/mm] - [mm] \frac{2}{5}y_0$ [/mm]
Nun setze ich die Stelle des Schnittpunktes in $y = [mm] -\frac{1}{2}x$ [/mm] ein und erhalte für $y = [mm] -\frac{2}{5}x_0 [/mm] + [mm] \frac{1}{5}y_0$. [/mm]
=> [mm] $S\left(\frac{4}{5}x_0 - \frac{2}{5}y_0 | -\frac{2}{5}x_0 + \frac{1}{5}y_0\right) [/mm]
Der Spiegelpunkt [mm] $P'(x_0 [/mm] ' | [mm] y_0 [/mm] ')$ lässt sich durch Addition von $2 [mm] \cdot \vec{P_0S}$ [/mm]  von P aus erreichen.
=> $2 [mm] \cdot \vec{P_0S} [/mm] = [mm] \vektor{-\frac{2}{5}x_0 - \frac{4}{5}y_0 \\ -\frac{4}{5}x_0 - \frac{8}{5}y_0}$ [/mm]
=> [mm] $x_0 [/mm] ' = [mm] -\frac{2}{5}x_0 [/mm] - [mm] \frac{4}{5}y_0$ [/mm] und [mm] $y_0 [/mm] ' = [mm] -\frac{4}{5}x_0 [/mm] - [mm] \frac{8}{5}y_0$ [/mm]
=> $A = [mm] \pmat{ -\frac{2}{5} & - \frac{4}{5} \\ -\frac{4}{5} & - \frac{8}{5} }$ [/mm]

=> Die Lösung hat hierzu was anderes => $A = [mm] \pmat{ \frac{3}{5} & - \frac{4}{5} \\ -\frac{4}{5} & - \frac{3}{5} }$ [/mm]

Ist meine Lösung oder die des Lösungsbuchs falsch und wenn es meine betrifft - warum?

Edit: Ich glaube ich habe die Lösung, meine ist falsch, weil ich noch den Ausgangspunkt P zu den Abbildungsgleichungen addieren muss oder?

f) ähnlicher Aufbau bloß wird die Gerade durch P mit der Steigung m = 1 bearbeitet

Würde mich über Feedback freuen.

Grüße

Joe

        
Bezug
Abbildungsmatrix gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Do 23.02.2012
Autor: MathePower

Hallo JoeSunnex,

> Gesucht sind die Abbildungsmatrizen für folgende lineare
> Abbildungen [mm]f: \IR^2 \rightarrow \IR^2[/mm]
>  
> c) Spiegelung an der Geraden [mm]y = -\frac{1}{2}x[/mm]
>  f)
> Projektion parallel zur Winkelhalbierenden [mm]y = x[/mm] auf die
> y-Achse
>  
> Hallo zusammen,
>  
> diesmal eine Frage zu linearen Abbildungen. Bei
> Aufgabenteil c habe ich einen Ansatz, den ich hier anfüge,
> bei f bin ich jedoch ratlos.
>  
> c)
>  
> Ich wähle einen Punkt [mm]P(x_0|y_0)[/mm].
>  Eine orthogonale Gerade zu [mm]y = -\frac{1}{2}x[/mm] durch den
> Punkt P ist: [mm]y=2(x-x_0)+y_0[/mm].
>  
> Nun bestimme ich den Schnittpunkt beider Geraden:
>  
> [mm]-\frac{1}{2}x = 2(x-x_0)+y_0[/mm] => [mm]x = \frac{4}{5}x_0 - \frac{2}{5}y_0[/mm]
>  
> Nun setze ich die Stelle des Schnittpunktes in [mm]y = -\frac{1}{2}x[/mm]
> ein und erhalte für [mm]y = -\frac{2}{5}x_0 + \frac{1}{5}y_0[/mm].
>  
> => [mm]$S\left(\frac{4}{5}x_0 - \frac{2}{5}y_0 | -\frac{2}{5}x_0 + \frac{1}{5}y_0\right)[/mm]
>  
> Der Spiegelpunkt [mm]P'(x_0 ' | y_0 ')[/mm] lässt sich durch
> Addition von [mm]2 \cdot \vec{P_0S}[/mm]  von P aus erreichen.
>  => [mm]2 \cdot \vec{P_0S} = \vektor{-\frac{2}{5}x_0 - \frac{4}{5}y_0 \\ -\frac{4}{5}x_0 - \frac{8}{5}y_0}[/mm]

>  
> => [mm]x_0 ' = -\frac{2}{5}x_0 - \frac{4}{5}y_0[/mm] und [mm]y_0 ' = -\frac{4}{5}x_0 - \frac{8}{5}y_0[/mm]
>  
> => [mm]A = \pmat{ -\frac{2}{5} & - \frac{4}{5} \\ -\frac{4}{5} & - \frac{8}{5} }[/mm]
>  
> => Die Lösung hat hierzu was anderes => [mm]A = \pmat{ \frac{3}{5} & - \frac{4}{5} \\ -\frac{4}{5} & - \frac{3}{5} }[/mm]
>  
> Ist meine Lösung oder die des Lösungsbuchs falsch und
> wenn es meine betrifft - warum?


Berechnet hast Du nur diejenige Abbildungsmatrix,
die angibt, um wieviel der Ausgangspunkt  zu verschieben
ist, um den Spiegelpunkt zu erhalten.


>  
> Edit: Ich glaube ich habe die Lösung, meine ist falsch,
> weil ich noch den Ausgangspunkt P zu den
> Abbildungsgleichungen addieren muss oder?
>  


Ja, das ist richtig.


> f) ähnlicher Aufbau bloß wird die Gerade durch P mit der
> Steigung m = 1 bearbeitet
>  


Poste dazu Deine bisherigen Rechenschritte.


> Würde mich über Feedback freuen.
>  
> Grüße
>  
> Joe


Gruss
MathePower

Bezug
                
Bezug
Abbildungsmatrix gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Do 23.02.2012
Autor: JoeSunnex

Schon mal danke MathePower, ich dachte mir, dass dieser Fehler vorliegt :)

also f)

Ausgangspunkt: [mm] $P(x_0 [/mm] | [mm] y_0)$ [/mm]

Gesucht wird Gerade durch P und parallel zu $y = x$
=> $m = 1$
=> $b= [mm] -x_0 [/mm] + [mm] y_0$ [/mm]
=> $y = x - [mm] x_0 [/mm] + [mm] y_0$ [/mm]

Schnittpunkt mit y-Achse => $x = 0$
=> $y = [mm] -x_0 [/mm] + [mm] y_0$ [/mm]
=> [mm] $S_y(0 [/mm] | [mm] -x_0 [/mm] + [mm] y_0)$ [/mm]

=> [mm] $x_0 [/mm] ' = 0$
=> [mm] $y_0' [/mm] = [mm] -x_0 [/mm] + [mm] y_0$ [/mm]

=> $A = [mm] \pmat{ 0 & 0 \\ -1 & 1 }$ [/mm]

Ich glaube so langsam habe ich das Konzept verstanden :)

Bezug
                        
Bezug
Abbildungsmatrix gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Do 23.02.2012
Autor: MathePower

Hallo JoeSunnex,

> Schon mal danke MathePower, ich dachte mir, dass dieser
> Fehler vorliegt :)
>  
> also f)
>  
> Ausgangspunkt: [mm]P(x_0 | y_0)[/mm]
>  
> Gesucht wird Gerade durch P und parallel zu [mm]y = x[/mm]
>  => [mm]m = 1[/mm]

> => [mm]b= -x_0 + y_0[/mm]
>  => [mm]y = x - x_0 + y_0[/mm]

>  
> Schnittpunkt mit y-Achse => [mm]x = 0[/mm]
>  => [mm]y = -x_0 + y_0[/mm]

>  =>

> [mm]S_y(0 | -x_0 + y_0)[/mm]
>  
> => [mm]x_0 ' = 0[/mm]
>  => [mm]y_0' = -x_0 + y_0[/mm]

>  
> => [mm]A = \pmat{ 0 & 0 \\ -1 & 1 }[/mm]
>  


[ok]


> Ich glaube so langsam habe ich das Konzept verstanden :)


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]