Abbildungsmatrix berechnen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:27 So 14.01.2007 | Autor: | pascal-g |
Aufgabe | Es seien $V := [mm] M_{2,3}(\IR), [/mm] W := [mm] M_{2,2}(\IR)$ [/mm] und $F: V [mm] \to [/mm] W$ die folgende [mm] $\IR$-lineare [/mm] Abbildung:
$F: V [mm] \to [/mm] W, M [mm] \mapsto [/mm] M * A,$ wobei [mm] $A=\pmat{ 1 & -3 \\ 2 & -2 \\ 3 & -1 } \in M_{3,2}(\IR)$.
[/mm]
Weiter seien die Basen
$B:= [mm] (\pmat{ 1 & 0 & 0 \\ 0 & 0 & 0 }, \pmat{ 0 & 1 & 0 \\ 0 & 0 & 0 }, \pmat{ 0 & 0 & 1 \\ 0 & 0 & 0 }, \pmat{ 0 & 0 & 0 \\ 1 & 0 & 0 }, \pmat{ 0 & 0 & 0 \\ 0 & 1 & 0 }, \pmat{ 0 & 0 & 0 \\ 0 & 0 & 1 })$ [/mm] von $V$ und
$C:= [mm] (\pmat{ 1 & 0 \\ 0 & 0 }, \pmat{ 0 & 0 \\ 0 & 1 }, \pmat{ 0 & \bruch{1}{2} \\ \bruch{1}{2} & 0 }, \pmat{ 0 & \bruch{1}{2} \\ -\bruch{1}{2} & 0 })$ [/mm] von $W$ gewählt.
Berechnen Sie die Abbildungsmatrix [mm] M^{B}_{C}(F) [/mm] von F bezüglich dieser beiden Basen. |
Leider verstehe ich hier nicht so richtig, wie ich aus den ganzen Basen eine Abbildungsmatrix erhalten soll. Vielleicht sehe ich das auch bloß zu kompliziert!?
Ich muss doch M * A rechnen, wobei M immer ein Eintrag aus B entspricht. Daraus erhalte ich dann eine 2x2-Matrix. Diese muss ich dann als Linearkombination aus C bilden können, oder? Also ich weiß wirklich nicht, wie ich hier rangehen muss.
Dieselbe Aufgabe gab es übrigens schon vor einem Jahr hier im Forum, da gab es aber auch kein wirkliches Ergebnis.
Ich hoffe, hier kann mir jemand kurz erklären, wie man da vorzugehen hat!?
Danke schon mal im Voraus!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:36 So 14.01.2007 | Autor: | DaMenge |
Hi,
du solltest dir zuerst mal ueberlegen, wie deine Darstellungsmatrix spaeter aussehen muss, also welche Dimension sie hat und welche VEKTOREN sie als eingabe und ausgabe erwartet.
in der Darstellungsmatrix stehen die Bilder der Basisvektoren von B als SPALTEN bzgl Basisdarstellung von C.
> Ich muss doch M * A rechnen, wobei M immer ein Eintrag aus
> B entspricht. Daraus erhalte ich dann eine 2x2-Matrix.
> Diese muss ich dann als Linearkombination aus C bilden
> können, oder?
richtig - die Linearkombination bzgl C schreibst du dann als SpaltenVektor in die Darstellungsmatrix, also beispiel:
wir berechnen die erste Spalte:
also zuerst das Bild von [mm] b_1 [/mm] :
$ [mm] \pmat{ 1 & 0 & 0 \\ 0 & 0 & 0 }*\pmat{ 1 & -3 \\ 2 & -2 \\ 3 & -1 }=\pmat{1&-3\\0&0}=1*\pmat{ 1 & 0 \\ 0 & 0 }+0*\pmat{ 0 & 0 \\ 0 & 1 }+(-3)*\pmat{ 0 & \bruch{1}{2} \\ \bruch{1}{2} & 0 }+(-3)*\pmat{ 0 & \bruch{1}{2} \\ -\bruch{1}{2} & 0 } [/mm] $
also das Bild von [mm] b_1 [/mm] bzgl Basisdarstellung C ist : [mm] $\vektor{1\\0\\-3\\-3}$
[/mm]
und dies ist deine erste Spalte der gesuchten Darstellungsmatrix.
(die restlichen Spalten analog mit den anderen [mm] b_i [/mm] )
viele Gruesse
DaMenge
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:42 So 14.01.2007 | Autor: | pascal-g |
Und mit diesem Vorgehen erhalte ich dann die folgende Matrix und bin somit fertig!?
$ [mm] M^{B}_{C}(F) [/mm] = [mm] \pmat{ 1 & 2 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 & -2 & -1 \\ -3 & -2 & -1 & 1 & 2 & 3 \\ -3 & -2 & -1 & -1 & -2 & -3 } [/mm] $
(Musst nicht alles ausrechnen, nur kurz drüber fliegen, damit ich mir sicher sein kann, es verstanden zu haben.)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:59 Mo 15.01.2007 | Autor: | DaMenge |
Hi,
also nachgerechnet hab ich es jetzt wirklich nicht, aber es schaut schon richtig aus..
viele Gruesse
DaMenge
|
|
|
|