matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenAbbildungen von Bällen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Abbildungen von Bällen
Abbildungen von Bällen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen von Bällen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:14 Mi 20.05.2009
Autor: dre1ecksungleichung

Aufgabe
Sei [mm] $f:B_{r}(x_0) \rightarrow \IR^n$ [/mm] und sei $||f(x)-f(x')|| [mm] \le [/mm] c [mm] \cdot{} [/mm] ||x-x'||$.
$c [mm] \in \IR$. $B_{r}(x_0)$ [/mm] ist der Ball/die Kugel um [mm] $x_0$ [/mm] mit Radius $r$.

Hi.
Ich habe eine Frage. Bei der obigen Problematik stehe ich gerade auf dem Schlauch. Angeblich soll dann gelten: [mm] f(B_r(x_0)) \subset B_c(f(x_0)) [/mm]
Nur ich sehe nicht warum?? Könnt ihr mir helfen?
Das wäre klasse!

Gruß

        
Bezug
Abbildungen von Bällen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Mi 20.05.2009
Autor: SEcki


> [mm]f(B_r(x_0)) \subset B_c(f(x_0))[/mm]

Das muss [mm]f(B_r(x_0)) \subset B_{c*r}(f(x_0))[/mm] heißen!

Setze dann einfach [m]x'=x_0[/m] in obige Gleichung ein.

SEcki

Bezug
        
Bezug
Abbildungen von Bällen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Sa 23.05.2009
Autor: dre1ecksungleichung

Müsste es dann aber nicht
$f(||x-x'||) [mm] \le [/mm] c [mm] \cdot{} [/mm] ||x-x'||$
heißen?

Bezug
                
Bezug
Abbildungen von Bällen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Sa 23.05.2009
Autor: SEcki


> Müsste es dann aber nicht
>  [mm]f(||x-x'||) \le c \cdot{} ||x-x'||[/mm]
>  heißen?

Nein, das Argument ist auch im Allgemeinen in einem anderen Def.bereich als [m]x,x'[/m]. Wie kommst du eigtl. auf diese Idee?

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]