matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraAbbildungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Abbildungen
Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungen: Frage
Status: (Frage) beantwortet Status 
Datum: 00:19 Mi 19.01.2005
Autor: pansen

Hallo.

Ich sitz vor folgender Aufgabenstellung und komm da nicht wirklich weiter.

Zeigen oder widerlegen Sie bei den folgenden Relationen, dass f= (M,N,R ) eine Abbildung ist.
1. M=N= [mm] \IR [/mm] , xRy gdw x [mm] \* [/mm] y = 0

2. M= [mm] \emptyset, [/mm] N=  [mm] \IN_{0} [/mm] , R = [mm] \emptyset [/mm]

3. M= [mm] \IN_{0}, [/mm] N = [mm] \IR, [/mm] xRy gdw y= log(x)

4.M= [mm] \{a,b\}, [/mm] N =  [mm] \{\alpha,\beta,\gamma\}, [/mm] R = [mm] \{(a,\alpha),(b,\beta)\} [/mm]

Also das 1. ist meiner Meinung nach keine Abbildung, da die Rechtseindeutigkeit nicht gegeben ist.

Für Tipps wäre ich sehr dankbar.

mfg

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildungen: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:27 Mi 19.01.2005
Autor: pansen

Ok, ich bin ein bisschen weiter.
Beim 2. komm ich nicht weiter, ich weiß nicht wie ich mit der leeren Menge umgehen muss.
Das 3. ist meiner Meinung nach keine Abbildung, da an der Stelle 0 kein y-Wert zugeordnet werden kann ( logarithmusfunktion erst ab 1 definiert ).
=> Keine Linksvollständigkeit

4. Abbildung

Was wird davon gehalten ?

Bezug
        
Bezug
Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mi 19.01.2005
Autor: moudi

Hallo pansen

Es kommt ein bisschen darauf an, was man unter  einer Abbildung versteht. Manchmal begnügt man sich mit dieser Eigenschaft.

Eine Relation hat funktionscharakter, wenn gilt:

[mm] $\forall x,y_1,y_2\ [/mm] \ [mm] x\,R\,y_1 [/mm] \ [mm] \&\ x\,R\,y_2\Rightarrow y_1=y_2$. [/mm]

Wenn man sich damit begnügt, dann haben in diesem Sinn die Relationen 2., 3. und 4. (solange [mm] $a\not=b$) [/mm] funktionscharakter.
Wenn man zusätzlich verlangt dass [mm] $\mathrm{dom}(R)=\{x\,|\,\exists y\ x\,R\,y\}=M$ [/mm] ist, dann scheiden 2. und 3. aus.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]