Abbildungen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:51 So 18.11.2007 | Autor: | Feroxa |
Aufgabe | es sei A = {f: [mm] \IR [/mm] --> [mm] \IR [/mm] / f(x) = ax + b, a,b [mm] \in \IR} [/mm] die Menge der affinen Abbildungen von [mm] \IR [/mm] nach [mm] \IR, [/mm] und mit [mm] \circ [/mm] sie die Komposition von Abbildungen bezeichnet.
1. Zeigen Sie, dass (A', [mm] \circ) [/mm] mit A' = {f [mm] \in [/mm] A / a [mm] \not= [/mm] 0} eine Gruppe ist. Ist diese Gruppe kommutativ?
2. Gibt es eine echte kommutative Untergruppe von (A', [mm] \circ)? [/mm] |
Also ich hab überhaupt keine Ahnung wie ich zeigen soll dass das ne Gruppe ist. Kann sein dass das wieder eigentlich einfach ist und ich da nur wieder aufm Schlauch stehe, aber ich blick da nicht durch.
Kommutativ dürfte die Gruppe eigentlich nicht sein weil das hieße ja das a + b = b + a --> ax + b = bx + a...was nicht stimmt....kann aber auch gut sein dass ich da auch in ne völlig falsche Richtung denke.
Bei 2. hab ich genauso wenig Ahnung. Ich hab ja sonst wenigstens immernoch ne Idee, aber hier fehlt mir irgendwie der Klick.
Kann aber gut sein, dass es bei 2 Klick macht wenns bei 1. Klick gemacht hat.
Kann mir irgendjemand einen Denkanstoß geben? Ich weiß nicht wie ich an die Aufgabe herangehen soll.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:34 So 18.11.2007 | Autor: | andreas |
hi
> Also ich hab überhaupt keine Ahnung wie ich zeigen soll
> dass das ne Gruppe ist. Kann sein dass das wieder
> eigentlich einfach ist und ich da nur wieder aufm Schlauch
> stehe, aber ich blick da nicht durch.
schau dir mal an, wie ihr gruppe definiert habt. du musst nur nachrechnen, dass die definition auf $A'$ zutrifft. mach dir außerdem klar, wie die verknüpfung in $A'$ aussieht: für $(ax + b), (a'x + b') [mm] \in [/mm] A'$ ist $(ax + b) [mm] \circ [/mm] (a'x + b') = a(a'x + b') + b = aa'x + (ab' + b)$ (hintereinanderausführung von funktionen). nun musst du zeigen, dass dies auch wieder in $A'$ ist. überlege dir dann, wie ein neutrales element aussehen könnte und wie ein inverses zu gegebene $ax + b [mm] \in [/mm] A'$ aussieht und zeige, dass dierse elemente tatsächlich die geforderten eigenschaften erfüllen!
> Kommutativ dürfte die Gruppe eigentlich nicht sein weil das
> hieße ja das a + b = b + a --> ax + b = bx + a...was nicht
> stimmt....kann aber auch gut sein dass ich da auch in ne
> völlig falsche Richtung denke.
das ist falsch! mach dir wie gesagt klar, wie die verknüpfung definiert ist. um zu zeigen, dass die gruppe nicht kommutativ ist, musst du einfach nur ein gegenbeispiel angeben!
grüße
andreas
|
|
|
|