matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenAbbildung auf linearität bewei
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Abbildung auf linearität bewei
Abbildung auf linearität bewei < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung auf linearität bewei: Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:37 Mo 22.06.2015
Autor: rsprsp

Aufgabe
Es seien die K-Vektorräume V und W, sowie die lineare Abbildung f : V → W gegeben. Zeigen Sie, dass die Abbildung:

f*: HomK(W, K) → HomK(V, K), φ [mm] \mapsto [/mm] φ ◦ f

linear ist.


Für alle φ aus Hom(W,K)
φ ° f aus Hom(V,K) ist.
Das liegt daran, dass beide linear sind.


f*(φ_{1}+φ_{2}) = f*(φ_{1}) + f*(φ_{2})  und   f*( [mm] \lambda [/mm] *φ) =  [mm] \lambda [/mm] *f*(φ)
sei en also φ_{1}, φ_{2} aus Hom(W,K)
dann ist für alle x aus V.

f*( φ_{1}+φ_{2}) (x) = (φ_{1}+φ_{2}) ( f(x)) nach Def. von f*
= φ_{1}(f(x)) + φ_{2}(f(x)) nach Def. von + für Abbildungen
= f*(φ_{1})(x) + f*(φ_{2}(x)) nach Def von f*
= (f*(φ_{1})+f*(φ_{2})) (x)
stimmt!

f*( [mm] \lambda [/mm] *φ) (x) = ( [mm] \lambda [/mm] *φ) ( f(x)) nach Def. von f*
=  [mm] \lambda [/mm] *φ(f(x)) nach Def. von * für Abbildungen
= f*( [mm] \lambda [/mm] *φ)(x) nach Def von f*
= (f* [mm] \lambda [/mm] *φ) (x)
stimmt!

Die Abbildung f*: HomK(W, K) → HomK(V, K), φ [mm] \mapsto [/mm] φ ◦ f ist linear!

Ist der Beweis richtig ?

        
Bezug
Abbildung auf linearität bewei: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Mo 22.06.2015
Autor: fred97


> Es seien die K-Vektorräume V und W, sowie die lineare
> Abbildung f : V → W gegeben. Zeigen Sie, dass die
> Abbildung:
>  
> f*: HomK(W, K) → HomK(V, K), φ [mm]\mapsto[/mm] φ ◦ f
>  
> linear ist.
>  
> Für alle φ aus Hom(W,K)
> φ ° f aus Hom(V,K) ist.
> Das liegt daran, dass beide linear sind.
>
>
> f*(φ_{1}+φ_{2}) = f*(φ_{1}) + f*(φ_{2})  und   f*(
> [mm]\lambda[/mm] *φ) =  [mm]\lambda[/mm] *f*(φ)
> sei en also φ_{1}, φ_{2} aus Hom(W,K)
> dann ist für alle x aus V.
>
> f*( φ_{1}+φ_{2}) (x) = (φ_{1}+φ_{2}) ( f(x)) nach Def.
> von f*
> = φ_{1}(f(x)) + φ_{2}(f(x)) nach Def. von + für
> Abbildungen
> = f*(φ_{1})(x) + f*(φ_{2}(x)) nach Def von f*
> = (f*(φ_{1})+f*(φ_{2})) (x)
> stimmt!
>  
> f*( [mm]\lambda[/mm] *φ) (x) = ( [mm]\lambda[/mm] *φ) ( f(x)) nach Def. von
> f*
> =  [mm]\lambda[/mm] *φ(f(x)) nach Def. von * für Abbildungen
> = f*( [mm]\lambda[/mm] *φ)(x) nach Def von f*
> = (f* [mm]\lambda[/mm] *φ) (x)
> stimmt!
>  
> Die Abbildung f*: HomK(W, K) → HomK(V, K), φ [mm]\mapsto[/mm] φ
> ◦ f ist linear!
>  
> Ist der Beweis richtig ?

Ja

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]