matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenAWA Picard-Lindelöf
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gewöhnliche Differentialgleichungen" - AWA Picard-Lindelöf
AWA Picard-Lindelöf < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

AWA Picard-Lindelöf: Idee
Status: (Frage) beantwortet Status 
Datum: 16:50 Mi 23.02.2011
Autor: Kampfkekschen

Aufgabe
Bestimmen Sie mit Hilfe des Satzes von Picard-Lindelöf ein Intervall über dem die Lösung der AWA mind existiert
[mm] y'(x)=(x^2+y^2(x))exp(1-x^2-y^2(x)), [/mm]
y(0)=0

Hallo zusammen,

ich versuche grade diese Aufgabe zu bearbeiten aber ich komme nicht weiter

Allgemein gehalten:
habe zuerst das Gebiet festgelegt: [mm] G=\IR^2 [/mm]
dann wollte ich überprüfen ob f auf G die Lipschitz-Bedingung erfüllt

Seien [mm] \vektor{x \\ y} [/mm] und [mm] \vektor{x \\ z} \in [/mm] G beliebig

|f(x,y) -f(x,z)| = [mm] |\bruch{df}{dy}(x,c)|*|y-z| [/mm]

nun soll man wohl prüfen ob
[mm] \bruch{df}{dy}(x,c) [/mm] <M auf G

wollte jetzt [mm] \bruch{df}{dy} [/mm] bestimmt aber hier komme ich nicht weiter...wie kann ich denn [mm] \bruch{df(x,y)}{dy}= \bruch{d(x^2+y^2(x))exp(1-x^2-y^2(x)}{dy} [/mm] bestimmen?
wäre für einen tipp dankbar!

gruß,
kekschen

        
Bezug
AWA Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mi 23.02.2011
Autor: MathePower

Hallo Kampfkekschen,


> Bestimmen Sie mit Hilfe des Satzes von Picard-Lindelöf ein
> Intervall über dem die Lösung der AWA mind existiert
>  [mm]y'(x)=(x^2+y^2(x))exp(1-x^2-y^2(x)),[/mm]
>  y(0)=0
>  Hallo zusammen,
>  
> ich versuche grade diese Aufgabe zu bearbeiten aber ich
> komme nicht weiter
>  
> Allgemein gehalten:
>  habe zuerst das Gebiet festgelegt: [mm]G=\IR^2[/mm]
>  dann wollte ich überprüfen ob f auf G die
> Lipschitz-Bedingung erfüllt
>  
> Seien [mm]\vektor{x \\ y}[/mm] und [mm]\vektor{x \\ z} \in[/mm] G beliebig
>  
> |f(x,y) -f(x,z)| = [mm]|\bruch{df}{dy}(x,c)|*|y-z|[/mm]
>  
> nun soll man wohl prüfen ob
> [mm]\bruch{df}{dy}(x,c)[/mm] <M auf G
>  
> wollte jetzt [mm]\bruch{df}{dy}[/mm] bestimmt aber hier komme ich
> nicht weiter...wie kann ich denn [mm]\bruch{df(x,y)}{dy}= \bruch{d(x^2+y^2(x))exp(1-x^2-y^2(x)}{dy}[/mm]
> bestimmen?


Hier ist doch:

[mm]f\left(x,y\right)=\left(x^{2}+y^{2}\right)*e^{1-x^{2}-y^{2}}[/mm]

Jetzt kannst Du partiell nach y differenzieren.


>  wäre für einen tipp dankbar!
>  
> gruß,
>  kekschen


Gruss
MathePower

Bezug
                
Bezug
AWA Picard-Lindelöf: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Mi 23.02.2011
Autor: Kampfkekschen

danke schonmal
aber irgendwie versteh ich das mit dem partiellen differenzieren noch nicht so denn ich weiß einfach nicht wie ich dann auf
[mm] exp(1-x^2-y^2)(x^2y^2+x^2)(-2yy'-2x)+exp(1-x^2-y^2)(2x^2yy'+2xy^2+2x) [/mm] komme..kann mir das vllt jemand erklären?

gruß

Bezug
                        
Bezug
AWA Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Mi 23.02.2011
Autor: MathePower

Hallo Kampfkekschen,

> danke schonmal
>  aber irgendwie versteh ich das mit dem partiellen
> differenzieren noch nicht so denn ich weiß einfach nicht
> wie ich dann auf
>  
> [mm]exp(1-x^2-y^2)(x^2y^2+x^2)(-2yy'-2x)+exp(1-x^2-y^2)(2x^2yy'+2xy^2+2x)[/mm]
> komme..kann mir das vllt jemand erklären?


Hier ist [mm]f\left(x, \ y\left(x\right) \ \right)[/mm] mit Hilfe
der verallgemeinerten Kettenregel nach x differenziert worden.


>  
> gruß


Gruss
MathePower

Bezug
        
Bezug
AWA Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mi 23.02.2011
Autor: fred97

Bei dieser Aufgabe genügt doch schon der Existenzsatz von Peano !

            http://de.wikipedia.org/wiki/Satz_von_Peano

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]