matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnung5 Würfel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitsrechnung" - 5 Würfel
5 Würfel < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

5 Würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Di 04.08.2009
Autor: Marius6d

Aufgabe
Wie gross ist die Wahrscheinlichkeit mit 5 Spielwürfeln mindestens 4 Sechser zu werfen?

Ich Frage mich was ich hier falsch gemacht habe, denn die Lösung stimmt nicht mit der offiziellen Lösung überein.

Also die beiden Ereignisse die eintreffen dürfen sind ja 4 mal 6 einmal eine andere Zahl oder 5 mal eine 6.

P(E) = P(E1)+P(E2)

P(E1) = [mm] \bruch{1}{6}^{4}*\bruch{5}{6}^{1}*\vektor{5 \\ 1} [/mm]

P(E2) = [mm] \bruch{1}{6}^{5} [/mm]

Gibt bei mir eine Lösung von 0.0027 also 0.27% laut Lösung muss es aber eine Wahrscheinlichkeit von 0.87% sein.

        
Bezug
5 Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Di 04.08.2009
Autor: Adamantin

Ich habe jetzt nicht nachgerechnet, ob deine Lösung stimmt, die Zahlen bzw der Weg stimmt jedenfalls, aber das Ergebnis sagt dir doch schon ,dass es falsch sein MUSS!

Also ich rede vom angegebenen Lösungsergebnis :) Denn 87% bei 5 Würfeln und der Kombination 5 mal die selbe Ziffer + 4 mal die selbe Ziffer solen nahezu 90% sein? Das kann nur ein Irrtum sein ;)

Bezug
                
Bezug
5 Würfel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:09 Di 04.08.2009
Autor: Arcesius


> Ich habe jetzt nicht nachgerechnet, ob deine Lösung
> stimmt, die Zahlen bzw der Weg stimmt jedenfalls, aber das
> Ergebnis sagt dir doch schon ,dass es falsch sein MUSS!
>  
> Also ich rede vom angegebenen Lösungsergebnis :) Denn 87%
> bei 5 Würfeln und der Kombination 5 mal die selbe Ziffer +
> 4 mal die selbe Ziffer solen nahezu 90% sein? Das kann nur
> ein Irrtum sein ;)

Er sagt nicht, die Lösung ist 87% sondern 0.87%.. also 0.0087.

Ich habe deinen Weg nachgerechnet und komme aber nicht auf deine 0.27%, sondern auf etwas über 0.33%.. Finde meinen Fehler aber nicht ^^

Ich hätte es aber auch gelöst, wie du es gemacht hast.

Grüsse, Amaro

Bezug
                        
Bezug
5 Würfel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Di 04.08.2009
Autor: Marius6d

:D das gefällt mir, jeder kommt auf eine anderee Lösung, ja die Lösungen sind eben aus dem Internet und da habe ich schon einige falsche Lösungen gefunden auf dieser Seite. Ist also kein Wunder wenn die 0.87% nicht stimmen. Ich werde morgen noch mal nachrechnen und hoffe das sonst noch irgendjemand die richtige Lösung herausfindet oder halt eine der obigen bestätigen kann.

Bezug
        
Bezug
5 Würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Di 04.08.2009
Autor: Adamantin

Dann muss ich mich tatsächlich entschuldigen, aber ich sagte schon, der Weg stimmt!

Es handelt sich um eine Bernoullikette und außerdem um eine Summe zweier Ketten, also im Tafelwekr mit F() nachsehbar. das Ergebnis beträgt: 0,00334=0,334 %

Bezug
                
Bezug
5 Würfel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:05 Mi 05.08.2009
Autor: Marius6d

Also ich habs nochmal nachgerechnet. komme jetzt auch auf 0.33, hab statt mal 5 nur mal 4 gerechnet, weiss auch nicht wieso :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]