3 fache Integration < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.uni-protokolle.de/foren/viewt/208169,0.html
Ich bekam dort eine Antwort, aber ich verstehe nicht wie er auf die [mm] $\int_0^1-y 1\,dx$ [/mm] gekommen ist. Unten ist aber mein eigentliches Problem.
Das ist auch meine erste Frage hier im Forum und ich hoffe ich mach nicht zu viele Fehler. Und zwar habe ich folgendes Problem.
[Dateianhang nicht öffentlich]
Ich soll von diesen Prisma mit Integration das Volumen errechnen.
Ich bin so vorgegangen das ich mir die $x,y$-Achse angeschaut habe und die Gerade schneidet $y$ und $x$ an der Stelle 1. Also habe ich daraus die Funktion $f(x) = -x +1$ abgeleitet.
Wenn man jetzt die Fläche integriert bekommt man [mm] $\int^1_0 -x+1\,dx [/mm] = [mm] [-\frac{1}{2}x^2+x]^1_0 [/mm] = [mm] \frac{1}{2}$ [/mm] raus.
Dann habe ich mir jeweils die zx und zy Achsen angschaut. Die haben die Funktion von 1 mit den Grenzen von 0 bis 1. Ja dann habe ich die Funktionen jeweils getrennt integriert und bekomme das Ergebnis raus, was man auch erwartet und zwar [mm] $\frac{1}{2}$ [/mm] VE.
Wie schreibe ich es nun konkret auf, also damit es Formel richtig ist. Ich hatte noch nie in der Schule mit 2 oder 3 Fach Integralen zu tun.
[mm] $\iiint_0^1\,f(x,y,z)\,dx\,dy\,dz\,= \iiint_0^1\,(-x+1)(1)(1) [/mm] = ?$
Mit freundlichen Grüßen
Michael
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:21 Mi 29.10.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|