matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe Zahlen3. Einheitswurzel komplexe Z.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "komplexe Zahlen" - 3. Einheitswurzel komplexe Z.
3. Einheitswurzel komplexe Z. < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

3. Einheitswurzel komplexe Z.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Do 06.02.2014
Autor: bavarian16

Aufgabe
Berechnen Sie [mm] \wurzel[3]{-\wurzel{3}+3i} [/mm] und verwenden Sie die Eulersche darstellung


Ich hab erstmal in Eulerform umgeschrieben:
[mm][mm] \wurzel[3]{\wurzel{12}*e^{i*\bruch{\pi}{3}}} [/mm]

Kann ich jetzt die Moivre Formel verwenden:
[mm]\wurzel[n]{r}\cdot{}[cos(k\cdot{}\bruch{2\pi}{n})+i\cdot{}sin(k\cdot{}\bruch{2\pi}{n})][/mm]

n: 3
k: 0 bis 2
r: [mm] \wurzel{12} [/mm]

Dann bekomm ich 3 Lösungen raus die ein gleichschenkliges 3Eck bilden.

        
Bezug
3. Einheitswurzel komplexe Z.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Do 06.02.2014
Autor: steppenhahn

Hallo,

> Berechnen Sie [mm]\wurzel[3]{-\wurzel{3}+3i}[/mm] und verwenden Sie
> die Eulersche darstellung
>  
> Ich hab erstmal in Eulerform umgeschrieben:
>  [mm][mm]\wurzel[3]{\wurzel{12}*e^{i*\bruch{\pi}{3}}}[/mm]

Das ist nicht ganz richtig, es gilt

[mm] $-\wurzel{3}+3i [/mm] = [mm] \sqrt{12}* e^{i*\frac{2}{3}\pi}$ [/mm]

(beachte das Minus vor [mm] $\sqrt{3}$). [/mm]


> Kann ich jetzt die Moivre Formel verwenden:
> [mm]\wurzel[n]{r}\cdot{}[cos(k\cdot{}\bruch{2\pi}{n})+i\cdot{}sin(k\cdot{}\bruch{2\pi}{n})][/mm]

Ja, aber die Formel geht anders. Bei dir ist ja der Winkel [mm] $\phi$ [/mm] egal?

Nutze:

[mm] $\sqrt[n]{r\cdot e^{i\phi}} [/mm] = [mm] \sqrt[n]{r}\cdot e^{i\cdot (\frac{\phi}{n} + \frac{2k}{n}\pi)} [/mm] = [mm] \wurzel[n]{r}\cdot{}\Big[cos(\frac{\phi}{n} [/mm] + [mm] k\cdot{}\bruch{2\pi}{n})+i\cdot{}sin(\frac{\phi}{n} [/mm] + [mm] k\cdot{}\bruch{2\pi}{n})\Big]$. [/mm]

(k = 0,...,n-1)

Prinzipielles Vorgehen ist aber richtig!

$n = 3$, $k = 0,1,2$, $r = [mm] \sqrt{12}$, $\phi [/mm] = [mm] \frac{2}{3}\pi$. [/mm]

Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]