matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungen2 differentialgleichungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - 2 differentialgleichungen
2 differentialgleichungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2 differentialgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 Do 22.11.2007
Autor: beta81

Aufgabe
(1) [mm] y'=xy^2 [/mm] mit y(0)=1
(2) [mm] y'-e^{-y}sinx=0 [/mm] mit y(0)=0


hallo,

kann mir einer bitte helfen?

ich hab folgendes gerechnet:

zu (1):

[mm] \frac{y'}{y^2}=x [/mm]
[mm] \integral [/mm] dx [mm] \frac{y'}{y^2}=\integral [/mm] dy [mm] \frac{1}{y^2}=\integral [/mm] dx x
[mm] -\frac{1}{y}=\frac{1}{2}x^2+c [/mm]
[mm] y=-\frac{2}{x^2}+c [/mm]

jetzt kann ich aber die anfangsbedingung nicht einsetzten, weil das x im nenner steht. was hab ich falsch gemacht?

zu (2):

[mm] \frac{y'}{e^{-y}}=sinx [/mm]
[mm] \integral [/mm] dy [mm] \frac{1}{e^{-y}}=\integral [/mm] dx sinx
[mm] e^{y}=-cosx+c [/mm]
y=ln(-cosx)+c

hier kann ich die anfangsbedingung auch nicht einsetzten, weil im logarithmus was negatives stehen wuerde. was hab ich hier falsch gemacht?

danke!

gruss beta


        
Bezug
2 differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:39 Do 22.11.2007
Autor: schachuzipus

Hallo beta,


> (1) [mm]y'=xy^2[/mm] mit y(0)=1
>  (2) [mm]y'-e^{-y}sinx=0[/mm] mit y(0)=0
>  
>
> hallo,
>  
> kann mir einer bitte helfen?
>  
> ich hab folgendes gerechnet:
>  
> zu (1):
>  
> [mm]\frac{y'}{y^2}=x[/mm]
> [mm]\integral[/mm] dx [mm]\frac{y'}{y^2}=\integral[/mm] dy
> [mm]\frac{1}{y^2}=\integral[/mm] dx x
>  [mm]-\frac{1}{y}=\frac{1}{2}x^2+c[/mm] [daumenhoch]
>  [mm]y=-\frac{2}{x^2}+c[/mm] [notok]

Du musst die rechte Seite gleichnamig machen, bevor du zum Kehrbruch übergehst:

[mm] $-\frac{1}{y}=\frac{1}{2}x^2+c=\frac{x^2+2c}{2}\Rightarrow y=-\frac{2}{x^2+2c}$ [/mm]

Dann klappts auch ;-)

>  
> jetzt kann ich aber die anfangsbedingung nicht einsetzten,
> weil das x im nenner steht. was hab ich falsch gemacht?
>  
> zu (2):
>  
> [mm]\frac{y'}{e^{-y}}=sinx[/mm]
> [mm]\integral[/mm] dy [mm]\frac{1}{e^{-y}}=\integral[/mm] dx sinx
> [mm]e^{y}=-cosx+c[/mm] [daumenhoch]
>  y=ln(-cosx)+c [notok]

Du musst doch den [mm] $\ln$ [/mm] auf die gesamte rechte Seite anwenden:

[mm] $e^{y}=-cosx+c\Rightarrow y=\ln(c-\cos(x))$ [/mm]

Also mit der Anfangsbedingung: [mm] $0=y(0)=\ln(c-\cos(0))=\ln(c-1)\Rightarrow [/mm] c=...$


>  
> hier kann ich die anfangsbedingung auch nicht einsetzten,
> weil im logarithmus was negatives stehen wuerde. was hab
> ich hier falsch gemacht?
>  
> danke!
>  
> gruss beta
>  



Gruß

schachuzipus

Bezug
                
Bezug
2 differentialgleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Do 22.11.2007
Autor: beta81

hi, danke fuer die antwort!

[mm]0=y(0)=\ln(c-\cos(0))=\ln(c-1)\Rightarrow c=...[/mm]

das kann ich doch jetzt nicht mehr nach c umformen, oder? wie geht das?

gruss beta



Bezug
                        
Bezug
2 differentialgleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Do 22.11.2007
Autor: schachuzipus

Hallo,

wieso nicht? ;-)

Du hast [mm] $\ln(c-1)=0$ [/mm]

[mm] $\Rightarrow e^{\ln(c-1)}=e^0$ [/mm]

[mm] $\Rightarrow....$ [/mm]


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]