2 Tangenten in einem Punkt? < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:58 Mo 24.09.2012 | Autor: | yss |
Aufgabe | d) 1. Florian behauptet: "Durch jeden Punkt des Graphen f gibt es 2 Geraden, die Tangenten an diesem Graphen sind." Erörtern sie diese Behauptung ohne Rechnung ausführlich anhand von Skizzen. Präzisieren sie ggf. Florians Behauptung, begründen Sie ihre Antwort und belegen Sie Ihre Ergebnisse in Spezialfällen rechnerisch!
2. Überprüfen Sie Ihre Erkenntnisse aus Teilaufgabe d) an den Funktionen g(x) = [mm] x^3+0,5x [/mm] und h(x)=(x+2)x(4-x) |
Also ich bin der Meinung, dass es in jedem Punkt nur eine Tangente geben kann, da jeder Punkt nur eine momentane Änderungsrate hat und die Ableitungsfunktion jedem Punkt des Graphen nur einen Wert als Steigung zuordnet.
- Ist das richtig oder gibt es da Sonderfälle?
- Und wie soll ich das mit einer Skizze begründen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:11 Mo 24.09.2012 | Autor: | Sigrid |
Halllo Yss,
> d) 1. Florian behauptet: "Durch jeden Punkt des Graphen f
> gibt es 2 Geraden, die Tangenten an diesem Graphen sind."
> Erörtern sie diese Behauptung ohne Rechnung ausführlich
> anhand von Skizzen. Präzisieren sie ggf. Florians
> Behauptung, begründen Sie ihre Antwort und belegen Sie
> Ihre Ergebnisse in Spezialfällen rechnerisch!
> 2. Überprüfen Sie Ihre Erkenntnisse aus Teilaufgabe d)
> an den Funktionen g(x) = [mm]x^3+0,5x[/mm] und h(x)=(x+2)x(4-x)
> Also ich bin der Meinung, dass es in jedem Punkt nur eine
> Tangente geben kann, da jeder Punkt nur eine momentane
> Änderungsrate hat und die Ableitungsfunktion jedem Punkt
> des Graphen nur einen Wert als Steigung zuordnet.
> - Ist das richtig oder gibt es da Sonderfälle?
Florian behauptet nicht, dass der gewählte Punkt des Graphen für beide Tangenten Berührpunkt ist. Du kannst u.U. durch den Kurvenpunkt eine Gerade zeichnen, die den Graphen in einem anderen Punkt berührt. Mach dir das mal an dem Graphen einer ganzration. Funktion 3. Grades klar.
Viele Grüße
Sigrid
> - Und wie soll ich das mit einer Skizze begründen?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|