matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungen2.Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - 2.Ordnung
2.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

2.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Fr 19.11.2010
Autor: Ice-Man

Hallo,

ich habe mal eine Frage zur zu DGL 2.Ordnung.

Wenn ich gegeben habe,

y''-2y'-3y=0

dann erhalte ich ja als Lösung:

[mm] y=c_{1}e^{-x}+c_{2}e^{3x} [/mm]

Nur wenn jetzt gefragt ist, welche Lösung durch den Punkt (0;2) verläuft, und dort den Anstieg -2 hat.

Wir komme ich da auf die Lösung

[mm] y=2e^{-x} [/mm]

Na welchen Schritten muss ich da vorgehen?

Danke

        
Bezug
2.Ordnung: Gleichungssystem
Status: (Antwort) fertig Status 
Datum: 13:04 Fr 19.11.2010
Autor: Roadrunner

Hallo Ice-Man!


Stelle ein Gleichungssystem auf mit:

$y(0) \ = \ 2$

$y'(0) \ = \ -2$

Berechne hieraus nun die beiden Konstanten [mm] $c_1$ [/mm] und [mm] $c_2$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
2.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Fr 19.11.2010
Autor: Ice-Man

Ok, das ist jetzt kein Problem.

Aber das ist "alles"?
Ich mein, den Ansatz den du geschildert hast, der bedeutet, das dort der Anstieg "-2" ist?

Bezug
                        
Bezug
2.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 Fr 19.11.2010
Autor: fencheltee


> Ok, das ist jetzt kein Problem.
>  
> Aber das ist "alles"?
>  Ich mein, den Ansatz den du geschildert hast, der
> bedeutet, das dort der Anstieg "-2" ist?

das ist wie früher mit dem polynom, dass durch bestimmte punkte mit bestimmten eigenschaften soll.

Nur wenn jetzt gefragt ist, welche Lösung durch den Punkt (0;2) verläuft, und dort den Anstieg -2 hat.

durch den punkt 0;2 heisst dann y(0)=2
und DORT den anstieg hat => y'(0)=-2

wie man die anfangswerte dann verrechnet, weisst du ja sicherlich

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]