matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegration1. Guldin'sches Postulat
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integration" - 1. Guldin'sches Postulat
1. Guldin'sches Postulat < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1. Guldin'sches Postulat: Tipp
Status: (Frage) beantwortet Status 
Datum: 01:49 Mo 26.11.2007
Autor: Humpf

Das erste Guldin'sche Postulat lautet nach Wikipedia:

Mantelfläche eines Rotationskörpers = L * 2 * [mm] \pi [/mm] * R,
wobei L die Länge der erzeugenden Linie des Rotationskörpers und 2 [mm] \pi [/mm] R der Umfang "des durch die Rotation des Schwerpunktes der Umfangslinie (Linienschwerpunkt) erzeugten Kreises".

Nun die Frage: Für die Entstehung einer Kugel lässt man eine Kurve um eine Achse rotieren, die dem halben Umfang eines Kreises entspricht, also [mm] \pi [/mm] * r.
Eingesetzt in die Formel ergäbe dies:

M = 2 * [mm] \pi² [/mm] * R², dabei ist die Oberfläche einer Kugel doch 4 * [mm] \pi [/mm] * r²....

Bin ich doof oder wat? ^^


Ich habe die Frage in keinen anderen Forum gestellt.
Vielen Dank im voraus für die Mühen!

        
Bezug
1. Guldin'sches Postulat: Linienschwerpunkt
Status: (Antwort) fertig Status 
Datum: 07:01 Mo 26.11.2007
Autor: Loddar

Hallo Humpf!


Ich nehme mal an, Du  setzt hier in die Formel den falschen Wert für den Abstand des Linienschwerpunktes $R_$ von der Drehachse ein. Es gilt hier:
$$R \ = \ [mm] \bruch{2}{\pi}*r$$ [/mm]

Dies kann man erhalten durch die Formel des Flächenschwerpunktes eines halben Kreisringes:
[mm] $$e_u [/mm] \ = \ [mm] \bruch{4}{3\pi}*\bruch{r_a^3-r_i^3}{r_a^2-r_i^2}$$ [/mm]
Nun eine entsprechende Grenzwertbetrachtung [mm] $r_i\rightarrow r_a$ [/mm] durchführen, und man erhält obiges Ergebnis.


Gruß
Loddar


Bezug
                
Bezug
1. Guldin'sches Postulat: Danke ^^
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:08 Di 27.11.2007
Autor: Humpf

Jepp, das war es! Danke schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]