matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnung1.Ableitung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - 1.Ableitung
1.Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

1.Ableitung: Lösungsvorschläge
Status: (Frage) beantwortet Status 
Datum: 22:16 Mi 05.07.2006
Autor: Thome

Aufgabe
Bilden Sie die erste Ableitung von:

[mm] 3*x^-^\bruch{2}{3} [/mm]

Hi,
Hier meine Lösungsvorschläge:

1. f'(x) = [mm] 3*x^-^\bruch{5}{3} [/mm]

2. f'(x) = [mm] -2x^-^\bruch{5}{3} [/mm]

welche der beiden Lösungen ist richtig??
oder sind beide Falsch??



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
1.Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 Mi 05.07.2006
Autor: Zwerglein

Hi, Thome,

die "Hochzahlregel" beim Ableiten von Potenzen heißt in (meinen) Worten:
"Hochzahl nach vorne; dann neue Hochzahl = alte minus 1"

f(x) = [mm] 3*x^{-\bruch{2}{3}} [/mm]

kommt also erst mal [mm] -\bruch{2}{3} [/mm] nach vorne;
ergibt zusammen mit der ursprünglichen 3:
[mm] 3*(-\bruch{2}{3}) [/mm] = -2.

Dann neue Hochzahl: [mm] -\bruch{2}{3} [/mm] -1 = [mm] -\bruch{5}{3} [/mm]

Ergo: Dein zweites Ergebnis stimmt!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]