matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraAussagen über minimale PZ
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - Aussagen über minimale PZ
Aussagen über minimale PZ < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen über minimale PZ: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:05 Di 12.12.2017
Autor: knowhow

Aufgabe
Sei R ein Integritätsbereich der Dimension dim(R)=1 und [mm] 0\neq I\vartriangleleft [/mm] R. Zeige folgende Aussagen:

(1) Ist [mm] I=Q_1\cap...\cap Q_n [/mm] minimal Primärzerlegung, so ist [mm] I=Q_1\cdots Q_n. [/mm]

(2) Ist R noethersch, so ist I ein endliches Produkt von primären Idealen [mm] Q_i [/mm] mit [mm] \wurzel{Q_i}\neq \wurzel{Q_j} [/mm] für [mm] i\neq [/mm] j, wobei die Faktoren bis auf die Reihenfolge eindeutig sind.

Guten Abend,

meine Überlegung ist,

zu (1) da gegeben ist, dass [mm] I=Q_1\cap...Q_n, [/mm] dann ist [mm] \wurzel{Q_i}\neq \wurzel{Q_j} [/mm] für [mm] i\neq [/mm] j und weiter ist [mm] \bigcap_{j\neq i} Q_j [/mm] nicht in [mm] Q_i [/mm] enthalten für i=1,...,n

und da dim(R)=1 und R integritätsbereich ist , ist jedes Primideal [mm] P=\wurzel{Q_i} [/mm] auch maximal.

Dann gilt mit dem chinesischen Restsatz:

[mm] R/I=R/Q_1\cap...\cap Q_n\cong R/Q_1\cdots Q_n [/mm]

Ist das soweit richtig? Kann mir jemand da helfen. Ich bin für jeden Tipp dankbar.

        
Bezug
Aussagen über minimale PZ: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 14.12.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]