matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKoordinatentransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Koordinatentransformation
Koordinatentransformation < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Koordinatentransformation: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:27 So 01.02.2015
Autor: Cccya

Aufgabe
Seien die Basen A=((0,-1,1),(1,0,1),(1,1,1)) und B=((1,2,1),(-1,1,1),(1,1,0))
gegeben und f: [mm] R^3 [/mm] --> [mm] R^3 [/mm] , die lineare Fortsetzung von f: [mm] e_{i} [/mm] --> [mm] e_{4-i}, [/mm]
wobei E die Standardbasis ist. Berechne die Transformationsmatrix der Koordinaten [mm] T^{A}_{B} [/mm] und die Darstellungsmatrix [mm] M^{A}_{B}(f). [/mm]

Stimmt es, dass [mm] T^{A}_{B}= T^{E}_{B} T^{A}_{E} [/mm] und [mm] T^{A}_{E} [/mm] einfach die Vektoren von A als Spalten hat, während [mm] T^{E}_{B} [/mm] die Inverse der Matrix ist, welche die Vektoren von B als Spalten hat?
Außerdem [mm] M^{A}_{B}(f)= T^{E}_{B} M^{E}_{E}(f) T^{A}_{E}, [/mm] wobei
[mm] M^{E}_{E}= \pmat{ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0}? [/mm]

Vielen Dank!

        
Bezug
Koordinatentransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 So 01.02.2015
Autor: huddel

Hey Cccya,

Ja das ist richtig. Jetzt solltest du mir nur noch erklären können warum :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]