Konstruktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
wie geh ich da vor?:Konstruiere ein Dreieck ABC mit |AB|=c=8 cm, >AC>=b=5,5 cm und gamma = 110°
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:25 Sa 02.12.2006 | Autor: | riwe |
zeichne die seite c,, der linke eckpunkt sei A, konstruiere über ihr den faßkreis F für den winkel gamma , und schlage um A einen kreis K mit radius b. der schnittpunkt von F und K ist der gesuchte punkt C.
sollte dir faßkreis nichts sagen, schau hier.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:28 Sa 02.12.2006 | Autor: | beachbaby |
WAS IS DENN DENN DER FA?KREIS F
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:30 Sa 02.12.2006 | Autor: | riwe |
hey baby, schau dir den link an!
werner
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:31 Sa 02.12.2006 | Autor: | beachbaby |
ICH VERSTEHE DIE ERKLÄRUNGEN DORT NICHT
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:05 Sa 02.12.2006 | Autor: | riwe |
mir ist nicht klar, was du da nicht verstehst.
mußt das schon genauer sagen!
suche eventuell unter zentri- und peripheriewinkel zur (weiteren) erklärung.
die einzige bosheit ist, dass [mm] \gamma [/mm] > 90. daher mußt du 90 - 110 also 20° auf der entgegengesetzten seite abtragen.
also seite c halbieren, senkrechte durch [mm] M_c [/mm] zum schnitt mit der 20°-geraden bringen, der schnittpunkt ist der umkreismittelpunkt U des dreiecks ABC.
vielleicht sagt ein bild mehr als worte.
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:28 So 03.12.2006 | Autor: | Marc |
Hallo,
> wie geh ich da vor?:Konstruiere ein Dreieck ABC mit
> |AB|=c=8 cm, >AC>=b=5,5 cm und gamma = 110°
Keine Ahnung, warum riwe die Fasskreiskonstruktion hervorkramt.
Also hier eine Lösung ohne Fasskreis:
1. Zeichne einen Winkel [mm] $\gamma=110°$ [/mm] und nenne den Scheitelpunkt C
2. Zeichne einen Kreis um C mit dem Radius AC=b=5,5 cm und nenne den Schnittpunkt mit dem ersten Schenkel aus 1.) "A".
3. Zeichne um A einen Kreis mit dem Rarius AB=c=8 cm und nenne den Schnittpunkt mit dem zweiten Schenkek aus 1.) "B"
Viele Grüße,
Marc
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:48 So 03.12.2006 | Autor: | riwe |
was stört dich denn am faßkreis?
werner
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:39 So 03.12.2006 | Autor: | Marc |
Hallo Werner,
> was stört dich denn am faßkreis?
Mich stört am Fasskreis, dass der Fragesteller ihn laut eigener Auskunft nicht kennt und dadurch doch nur verwirrt wird. Warum sollte er sich mit dieser umständlichen Variante beschäftigen, wenn er im Unterricht die Kongruenzaufgabe SsW lernen soll?
Gegen neue Stoffhorizonte habe ich ja nichts, ich finde aber, wir sollten den Schülern zunächst innerhalb ihres eigenen Vorwissens weiterhelfen. Und wenn er sagt, er kennt den Fasskreis nicht, dann hilft ihm eine Antwort, die trotzdem auf dem Fasskreis besteht, nicht weiter.
Viele Grüße,
Marc
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:19 Mo 04.12.2006 | Autor: | riwe |
da bin ich ja schon froh, dass du nichts dagegen hast, gegen neue STOFFHORIZONTE.
ein schönes wort!.
wenigstens nicht in der weihnachtszeit, ich meine das dagegenhaben.
woher sollte ich denn wissen, dass er/sie das nicht kennt???
diese auskunft hat er ja nachgeliefert usw.
Ich bin halt kein hellseher.
aber wirst schon recht habern,
ich denke halt automatisch an faßkreis bei c und [mm] \gamma......
[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:19 Mo 04.12.2006 | Autor: | Marc |
Hallo Werner,
> da bin ich ja schon froh, dass du nichts dagegen hast,
> gegen neue STOFFHORIZONTE.
Wieso sollte Dich meine Meinung froh machen?
> ein schönes wort!.
> wenigstens nicht in der weihnachtszeit, ich meine das
> dagegenhaben.
>
> woher sollte ich denn wissen, dass er/sie das nicht
> kennt???
> diese auskunft hat er ja nachgeliefert usw.
> Ich bin halt kein hellseher.
Also, ich kann das hier im Hellen sehen
> aber wirst schon recht habern,
> ich denke halt automatisch an faßkreis bei c und
> [mm]\gamma......[/mm]
Ich möchte Dir da auch nicht reinreden, wie Du hier antwortet, das steht mir (als Mitglied und selbst als einzelner Moderator des Projektes) natürlich nicht zu.
Aber versetz' Dich doch einfach mal in die Lage des Schülers (bzw. Schülerin):
(Chronologische Reihenfolge!)
1. Er stellt eine Frage zu seinem Unterricht: Link
2. bekommt (von Dir) eine Antwort, die seinen Stoff übersteigt: Link
3. sagt das deutlich: Link
4. wird von Dir erneut aufgefordert, sich trotz seiner Probleme mit dem aktuellen Stoff mit dem neuen Stoff zu beschäftigen: Link
5. beklagt sich folgerichtig erneut: Link
6. und erhält trotzdem eine Antwort, mit der er nichts anfangen kann: Link
An seiner Stelle wäre ich ziemlich frustriert, weil trotz Protest gar nicht auf meine (Unterrichts-) Situation und meine Vorkenntnisse eingegangen wurde.
Wie gesagt, es handelt sich hier nur um meine Meinung, von der Du Dir nichts annehmen musst.
Viele Grüße,
Marc
|
|
|
|