matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelFlächenbestimmung mit Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Längen, Abstände, Winkel" - Flächenbestimmung mit Vektoren
Flächenbestimmung mit Vektoren < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenbestimmung mit Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Di 27.05.2008
Autor: OTAN

Aufgabe
[mm] \vec{a}=\pmat{0\\3\\4} [/mm]
Bestimme [mm] \vec{b} [/mm] so, dass [mm] \vec{b} [/mm] mit [mm] \vec{a} [/mm] ein Rechteck von 20 [mm] cm^2 [/mm] aufspannt.

Hallo miteinander,
ich weiß jetzt schon, dass [mm] |\vec{a}|=\wurzel{\vec{a}*\vec{a}}=5 [/mm] ist, also der Vektor [mm] \vec{a} [/mm] 5FE lang ist und [mm] \vec{b} [/mm] somit eingentlicht 4FE lang sein muss.
Aber wie bestimme ich nun den Vektor [mm] \vec{b} [/mm] und nicht nur den Betrag von [mm] \vec{b}?! [/mm]
Vielen Dank schonmal für die Antwort(en)

MfG

PS:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Flächenbestimmung mit Vektoren: Skalarprodukt
Status: (Antwort) fertig Status 
Datum: 18:40 Di 27.05.2008
Autor: Loddar

Hallo OTAN!


Da es sich hier um Rechteck handeln soll, müssen [mm] $\vec{a}$ [/mm] und [mm] $\vec{b}$ [/mm] senkrecht zueinander stehen.

Damit muss also gelten:  [mm] $\vec{a}*\vec{b} [/mm] \ = \ 0$


Gruß
Loddar


Bezug
                
Bezug
Flächenbestimmung mit Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Di 27.05.2008
Autor: OTAN

Und wie rechne ich da jetzt genau weiter??
Ich hab in die Gleichung mal [mm] \vec{a}=\pmat{0\\3\\4} [/mm] eingesetzt und habe dann:
[mm] \pmat{0\\3\\4}*\vec{b}=0 [/mm]
also ist [mm] \vec{b} [/mm] doch [mm] \pmat{0\\-3\\-4} [/mm] oder?? aber dann käme bei der Gleichung [mm] \vec{a}*\vec{b}=0 [/mm] eben nicht 0 raus....

Bezug
                        
Bezug
Flächenbestimmung mit Vektoren: Korrektur
Status: (Antwort) fertig Status 
Datum: 20:14 Di 27.05.2008
Autor: Loddar

Hallo OTAN!


Da hast Du Dich beim MBSkalarprodukt etwas vertan.

Du musst hier doch folgende gleichung berücksichtigen mit [mm] $\vec{b} [/mm] \ = \ [mm] \vektor{x\\y\\z}$ [/mm] :

[mm] $$\vec{a}*\vec{b} [/mm] \ = \ [mm] \vektor{0\\3\\4}*\vektor{x\\y\\z} [/mm] \ = \ 0*x+3*y+4*z \ = \ 0$$
[mm] $$\left|\vec{b}\right| [/mm] \ = \ [mm] \left|\vektor{x\\y\\z}\right| [/mm] \ = \ [mm] \wurzel{x^2+y^2+z^2} [/mm] \ = \ 4$$

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]