matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeExtremwert eines Spielfeldes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Extremwertprobleme" - Extremwert eines Spielfeldes
Extremwert eines Spielfeldes < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert eines Spielfeldes: Tipps und Lösungshilfen
Status: (Frage) beantwortet Status 
Datum: 18:47 Di 29.08.2006
Autor: Dr.Prof.Niemand

Aufgabe
Eine 400-m-Laufbahn in einem Stadion besteht aus zwei parallelen Strecken und zwei angesetzten Halbkreisen. Für welchen Radius x der Halbkreise wird die rechteckige Spielfläche maximal?

Ich verstehe nicht wie die das mit dem maximal meinen, ist die Fläche nicht maximal wenn x=unentlich ist?
Brauche bitte hilfe bei dieser Aufgabe...

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt  http://www.infmath.de/thread.php?threadid=4678

        
Bezug
Extremwert eines Spielfeldes: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Di 29.08.2006
Autor: M.Rex


> Eine 400-m-Laufbahn in einem Stadion besteht aus zwei
> parallelen Strecken und zwei angesetzten Halbkreisen. Für
> welchen Radius x der Halbkreise wird die rechteckige
> Spielfläche maximal?
>  Ich verstehe nicht wie die das mit dem maximal meinen, ist
> die Fläche nicht maximal wenn x=unentlich ist?
>  Brauche bitte hilfe bei dieser Aufgabe...


Hallo

Klar, wenn x [mm] \to \infty, [/mm] wird die Fläche Maximal. Hier hast du aber ein Stadion zu bauen, dass eine 400m Laufbahn UND einen möglichst grossen Innenraum haben soll.
Sei nun x der Radius der Bahn, und y die Länge der geraden Strecke der Laufbahn.

Das Rechteck (der Innenraum) hat den Flächeninhalt A = 2x * y

Jetzt soll die Laufbahn 400m lang sein.

Der Umfang der beiden Halbkreise, die ja Teil der Laufbahn sind, ist [mm] \bruch{2 \pi x}{2}, [/mm] also [mm] \pi [/mm] x.

Also gilt:  
2 [mm] \pi [/mm] x + 2 y = 400. (Man läuft zwei mal die Gerade und zwei Halbkreise)
[mm] \gdw [/mm] y = [mm] \bruch{400 - 2 \pi x}{2} [/mm] = 200 - [mm] \pi [/mm] x.

Das ganze in die Flächenformel des Innenraumes
A = 2 x * y einsetzen ergibt:

A = 2 x (200 - [mm] \pi [/mm] x)

Hiervon suchst du jetzt das Maximum.

(entweder per Ableitung oder per Scheitelpunktsform das Ganze ist nämlich eine Parabel)

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]