matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - EigenwerteEigenwert A^4
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Eigenwerte" - Eigenwert A^4
Eigenwert A^4 < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert A^4: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Di 03.04.2012
Autor: racy90

Hallo,

ich stehe gerade etwas an.

Sei [mm] \lambda [/mm] ein fixer Eigenwert von A. Überlegen sie anhand der Definition von Eigenwerten und Eigenvektoren,jeweils einen Eigenwert für [mm] A^4 [/mm] und A^-1

Die Defintion besagt ja [mm] Ax=\lambda*x [/mm]

und ein Skalar [mm] \lambda \in [/mm] K ist genau dann ein Eigenwert von A wenn [mm] det(\lambda*I-A)=0 [/mm]

Aber wie bekommt man hier nun Eigenwerte heraus,das ganze ist ja sehr theoretisch :/

        
Bezug
Eigenwert A^4: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Di 03.04.2012
Autor: Diophant

Hallo,

multipliziere doch einmal die Gleichung

[mm] A*x=\lambda*x [/mm]

dreimal von links mit A und jongliere noch ein wenig herum, dann solltest du auf das sehr naheligende Ergebnis für den Eigenwert von [mm] A^4 [/mm] kommen.

Und wenn du das Prinzip mal hast, dann ist der Eigenwert für die INverse auch nicht schwierig, man schreibt ja nicht umsonst [mm] A^{-1} [/mm] ...

Die Determinante det(M-sE) benötigt man m.A. nach in beiden Fällen nicht.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]