matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Abzählbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Analysis des R1" - Abzählbarkeit
Abzählbarkeit < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abzählbarkeit: Beweise für MxN
Status: (Frage) beantwortet Status 
Datum: 22:09 Do 18.09.2008
Autor: Feiratos

Aufgabe
Seien M und N höchstens abzählbare Mengen. Beweisen Sie, dass dann das Produkt M x N ebenfalls höchstens abzählbar ist.

Zuerst habe ich mir angeschaut, wann eine Menge höchstens abzählbar ist und dann versucht zu erkennen,, was mit den Mengen M und N passiert, bei M x N .


ist n [mm] \in \IN, [/mm] so sei [mm] \IN_n [/mm] := {k [mm] \in \IN [/mm] : [mm] 1\le [/mm] k [mm] \le [/mm] n} ={1,...,n}

Eine Menge M heisst höchstens abzählbar [mm] :\gdw [/mm] M ist abzählbar o. endlich
Menge M heisst endlich [mm] :\gdw [/mm] M = [mm] \emptyset [/mm] oder [mm] \exists [/mm] n [mm] \in \IN [/mm] : M [mm] \sim \IN_n [/mm]

weiter heisst M abzählbar [mm] :\gdw M\sim \IN [/mm]

zu zeigen M X N ist höchstens abzählbar.

es gibt hierbei mehrere Fälle:

(1)

M={()}

M x N = N x M = N  ( N kann auch = [mm] \emptyset, [/mm] oder auch [mm] M=\emptyset [/mm] und [mm] N=\emptyset) [/mm]

weiter gelte [mm] M\not=0 [/mm] und [mm] N\not=0 [/mm]
(2)

Sei [mm] M=\{m_1,m_2\} [/mm] und [mm] N=\{n_1,n_2,n_3\} [/mm]

Dann ist M x [mm] N=\{(m_1,n_1),(m_1,n_2),(m_1,n_3),(m_2,n_1),m_2,n_2),(m_2,n_3)\} [/mm]
Das zeigt doch, dass das kartesische Produkt von endlichen Mengen auch endlich ist.

(3) nur eine der Mengen ist endlich

(4) M und N abzählbar.

3 und 4 weiß ich keinen Anfang

bei (3 )müsste eine Menge endlich und die andere abzählbar sein.

bei (4),sowie auch bei (3) stolpere ich über die Äbzählbarkeit.

Zwei nichtleere Mengen heissen gleichmächtig (also hier M [mm] \sim [/mm] N)
[mm] :\gdw [/mm] es existiert eine bijektive Abbildung f: [mm] M\to [/mm] N

zu zeigen: die Abbildung [mm] f_1 M\to\IN [/mm] ist bijektiv.
hier hängst bei mir, und weiß auch nicht ob meine Ansätze richtig sind.

viele Grüße





        
Bezug
Abzählbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Do 18.09.2008
Autor: pelzig

Hallo,

> Seien M und N höchstens abzählbare Mengen. Beweisen Sie,
> dass dann das Produkt M x N ebenfalls höchstens abzählbar
> ist.
>  Zuerst habe ich mir angeschaut, wann eine Menge höchstens
> abzählbar ist und dann versucht zu erkennen, was mit den
> Mengen M und N passiert, bei M x N.

Sehr gut.

> es gibt hierbei mehrere Fälle:
>  
> (1) M={()}

Du meinst wohl $M$ oder $N$ sind leer.

> M x N = N x M = N  ( N kann auch = [mm]\emptyset,[/mm] oder auch
> [mm]M=\emptyset[/mm] und [mm]N=\emptyset)[/mm]
>  
> weiter gelte [mm]M\not=0[/mm] und [mm]N\not=0[/mm]
>  (2) Sei [mm]M=\{m_1,m_2\}[/mm] und [mm]N=\{n_1,n_2,n_3\}[/mm]

Du meinst wohl $M$ und $N$ sind endlich.

> Dann ist M x
> [mm]N=\{(m_1,n_1),(m_1,n_2),(m_1,n_3),(m_2,n_1),m_2,n_2),(m_2,n_3)\}[/mm]
>  Das zeigt doch, dass das kartesische Produkt von endlichen
> Mengen auch endlich ist.

Das zeigt nur, dass das kartesische Produkt einer 2-elementigen Menge mit einer 3-elementigen Menge endlich ist.
Du kannst zeigen (mit vollständiger Induktion), dass das kartesische Produkt einer $n$-elementigen Menge mit einer $m$-elementigen Menge [mm] $m\cdot [/mm] n$ Elemente hat.
Das würde ich dir zur Übung eigentlich auch mal empfehlen, denn da musst du über [mm] $\operatorname{card}(M)$ [/mm] und [mm] $\operatorname{card}(N)$ [/mm] gleichzeitig Induktion machen.

> (3) nur eine der Mengen ist endlich
>  
> (4) M und N abzählbar.
>  
> 3 und 4 weiß ich keinen Anfang
>  
> bei (3 )müsste eine Menge endlich und die andere abzählbar
> sein.
>  
> bei (4),sowie auch bei (3) stolpere ich über die
> Äbzählbarkeit.

Soweit schonmal ganz gut. Man sieht, dass du Fortschritte machst. Für 3) und 4) bleibt dir nichts anderes übrig, als wirklich eine Bijektion von [mm] $M\times [/mm] N$ auf [mm] $\IN$ [/mm] zu konstruieren.
Ich persönlich würde die Aufgabe aber anders angehen. Erstens musst du dir klar machen, dass es genügt die Behauptung für [mm] $M,N\subset\IN$ [/mm] zu zeigen. Dann würde ich versuchen, nur den 4. Fall zu betrachten, d.h.

1) Das kartesische produkt zweier abzählbarer Mengen ist abzählbar. Hier genügt es den Fall [mm] $M=N=\IN$ [/mm] zu betrachten (warum?).
2) Eine Teilmenge einer abzählbaren Menge ist höchstens abzählbar.

Dann folgen aus der zweiten Aussage nämlich auch alle anderen Fälle, denn aus [mm] $M,N\subset\IN$ [/mm] folgt [mm] $M\times N\subset\IN\times\IN$ [/mm] (Beweis?).
Aber wie zeigt man die erste Aussage? Hier musst du wie gesagt eine Bijektion [mm] $\varphi:\IN\times\IN\to\IN$ [/mm] konstruieren.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]